
© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Our API Assessment Process

Discovery Analysis Define and
Develop

Document Conclusion

People

Critical Understandings

EcoSystem, Problem,

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Assessment Flow

User
Interface

ClientCloud
Request Handler

Cloud
API Wrapper

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

SWOT Examination

W E A K N E S S E S

O
P

P
O

R
T

U
N

IT
IE

ST H R E A T S

S
T

R
E

N
G

T
H

S

SWOT

Strengths
Existing applications satisfy

business need.

Excellent portfolio of promotional

capabilities.

Opportunities
Refactor APIs as products.

Leverage wholesale application

community to drive business.

Secure application by leveraging

existing infrastructure.

Weaknesses
Security through obscurity.

No deployment methodology.

Dated technology.

Threats
Security and policy.

Developer attraction to dated

technology.

Legal liability.

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Code Readiness
Is there enough information for a developer to begin coding and testing?

Code

Base

Code Start

Instead of measuring code quality, readability, the attempt here is to

measure if the developer has enough information to proceed through

the DevOps lifecycle.

100%
Wireframes

50%

Code
Reviews

0%
Unit Test

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

API Security Level
The ability to protect information systems and assets while delivering business value through risk assessments and mitigation strategies.

Minimal

Discretionary

Controlled

Labeled

Structured

Verified

Protection

High

Somewhat
High

Level 1 - Minimal Protection
Zero Characteristics, Evaluation Failed

Level 2 - Discretionary Protection
Identification, Authentication, Assurance Minimal, DAC

Level 3 - Controlled Access
Auditing Capable, Security Testing

Level 4 - Labeled Security
MAC for objects, Labeled Object Access, Stringent Security Testing, Security Model

Level 5 - Structured Protection
High level design, Layered Abstraction, Tamperproof functions,
Admin guide, Design Documentation

Risk

Medium

Somewhat
Low

Low

Security Level Description

Level 6 - Verified ProtectionNo Risk

We are here

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

API Security Audit

Tr
an

sp
or

t

Au
th

or
iza

tio
n

Re
qu

es
t/

Re
sp

on
se

Ha

nd
lin

g

Pr
oc

es
s

Au
th

en
tic

at
io

n

Co
nt

ex
t

Se
cu

rit
y

Co
di

ng

Pr
ac

tic
es

Identity of caller known Path does not contain

sensitive information

Valid and verified data

exchanged, no caching of

information

Dynamic queries forbidden,

errors caught and

converted to standard

HTTP errors.

Appropriate personnel can

deploy and disable APIs.
Information transmission in

most secure fashion

Access to resource verified

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Current State Measurements
Degree of security

Transport Authorization Authentication Context Request/
Response

Security
Coding

Process

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Future State

Authenticate First, then
authorize,

Allow only enough access

Log all API
Interaction to get
end-to-end usage

view

Use simplest method of
authentication, authorization
for API. Don’t implement your

own.

Configure and
adopt standards,

avoid coding
security

Layer API security

IP whitelisting

Two way SSL/TLS

TLS version enforcement

Geo Filtering

Filter out bots

Leverage API
policies

Secure end to end
connection

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Incorporation Strategy

Gateway

Step 2

❖ Place all APIs behind
a gateway

❖ Utilize gateway Policy

❖ Establish token use

Policy

Step 3

❖ Caching

❖ Security

❖ Mediation

Authentication

Step 4

❖ API Gateway is only
authorized caller to
backend

❖ No part of API
operates without
validating identity of
caller

❖ No caching of
credentials

Authorization

Step 5

❖ Backend system
validates the provider
claim set

❖ Return error on
authorization failure

❖ All code paths
require authorization
by default.

Process

Step 6

❖ Code passes security
audit

❖ Code base
consolidated into
deployment process

❖ Unit test written

Transport

Step 1

❖ All communication to
network edge use
TLS

❖ All communication
from edge to backend
use TLS

❖ Trusted issued
certificates, checked
for validity

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

All communications to the edge of the network are secured using the most recent version of TLS with perfect forward secrecy and a modern cipher set.
All communications from the edge of the network to backends are secured using the most recent version of mutual TLS with perfect forward secrecy and a modern cipher set.
No export grade encryption algorithms are used.
Certificates are issued by a trusted PKI.
Certificates are checked for revocation on every call.
Certificates are checked for validity period on every call.
Certificates are checked against presented server names for every call.
Certificates uniquely identify a specific system (i.e., wildcard certificates are not used).
Certificates are properly controlled to ensure their private keys are protected.
Certificate pinning or another suitable certificate protection method should be employed.
If OAuth is used, OAuth 2.0 is used instead of 1.0a.
OAuth or another suitable authentication mechanism to used to authenticate access to all endpoints.
The API Gateway is responsible for handling authentication; endpoints do not authenticate users.
All calling applications provide an API key in the header.
The API Gateway does not cache the results of authentication for given credentials.
The API Gateway validates that a presented Bearer token was issued to the presenting application.
Authentication results include a set of claims.
Bearer tokens are signed, then encrypted, JWTs when exposed to calling applications.
The API Gateway transmits claims to backend systems to handle domain and business logic-based authorization.
The API Gateway is the only authorized caller to backend systems, and it authenticates using a digital certificate over mutual TLS.
Remote systems cannot impersonate users without evidence that the user has authenticated and authorized this impersonation.
No part of the API delivery stack operates without validating the identity of its caller.
The API Gateway properly validates JWTs.
A 401 is returned for any authentication failure.
The API Gateway evaluates the calling application to authorize access to an endpoint.
The API Gateway evaluates the scopes of the Bearer token or an equivalent mechanism to authorize access to an endpoint.
Authorization that requires domain knowledge is implemented below the API Gateway.
The API Gateway provides claims to underlying systems to perform authorization.
Authorization results are not cached.
Backend systems validate that the provider of a claimset is authorized to provide that claimset.
If OAuth is used, users can revoke tokens without administrator assistance.
A 403 is returned for any authorization failure.
Authorization logic occurs early in the code path, before any business logic is executed.
All code paths require authorization by default.
Scope claims are used to constrain the activities permitted by an caller's provided authentication material.
Sensitive information is not visible in paths.
Sensitive information is not visible in headers.
Correlation keys are requested of clients.
If a client does not provide a correlation key, one is created by the API Gateway.
Context returned to the client that the API expects to have returned to it is cryptographically secured.
Content types of request bodies are verified.
Methods that do not accept content (such as GETs) reject requests that attempt to send such data.
Content is verified to be syntactically correct.
Content is verified against an appropriate schema, if JSON or XML.

Request bodies are not directly bound to data objects.
Properties, headers, and content in the request is ignored if the API does not understand or expect it.
Binary objects are only accepted as base64 encoded strings.
Call rates are throttled by caller and overall on an endpoint.
Errors are returned in a consistent structure.
Stack traces and other internal information about the operations of your API's backends are not returned in errors.
Proprietary information, such as server names or platforms, are not returned in response headers or bodies.
Excess information about the nature of an error, such as "invalid password" instead of "invalid or missing credentials," is not provided in errors.
Error responses only include sufficient information for a consumer to know how to correct their request.
Sensitive information is not visible in response headers.
Authentication and authorization-relevant endpoints use the no-cache directive.
Stale information is properly identified using Cache-Control headers.
All systems beyond the furthest caching layer use Cache-Control headers to disable caching.
Sensitive information is redacted, if appropriate, by data loss protection systems.
CORS should be available for any API that is likely to be accessed by JavaScript running a browser.
HSTS headers should be returned to enforce upgrades to HTTPS on all endpoints.
Responses are verified against an appropriate JSON or XML schema, if appropriate.
Responses do not contain sensitive data that the API expects the client to filter.
All SQL queries are parameterized.
Dynamic SQL in stored procedures is forbidden.
JSON is not evaluated directly as JavaScript.
External references in JSON and XML documents are not followed.
Binary code or script code in request bodies is never executed.
Security-related events are logged to a centralized security event system.
All exceptions are caught and converted to standardized errors.
All type shapes in the API's contract definition have clearly defined and explicit descriptions and validation patterns.
Developers must attest to the security of their API product, including all code within it.
Systems hosting API delivery stack components are patched regularly.
Information security personnel are part of API product teams.
APIs are tested for security flaws with penetration testing tools.
APIs are tested for common security flaws with static code analysis tools.
APIs are only developed using managed code.
Critical vulnerabilities in API delivery stack components are patched immediately.
Network isolation techniques are used to control the flow of API traffic.
Sudden changes in the usage of an API are detected and reviewed.
Security-sensitive policy in the API Gateway is maintained in shared libraries and access to change it is controlled.
Appropriate personnel can disable APIs.
Appropriate personnel can disable access to APIs by applications.
Data is marked with appropriate security classifications to identify its appropriate usage.
Developers cannot modify code in any enviroment without following the normal code progression path.
Automated test systems prevent untested code from entering environments.
Technical debt, including exceptions to these standards, is recorded and reported to management.
Non-production endpoints are not available to consumers, unless the endpoint is a well-defined sandbox endpoint exposing only test data.
APIs are properly inventoried such that the entire solution, including underlying infrastructure, are available for review and analysis.

API Security Yardstick

Confidential © Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

dba Taliferro Group
Making Things Better
06/09/2024

425.600.7066
vikki.owens@taliferro.com x102
ty.showers@taliferro.com x101
ATTN: Taliferro Group
1424 11th Ave STE 400
Seattle, WA 98122

Taliferro Tech

mailto:vikki.owens@taliferro.com
mailto:ty.showers@taliferro.com

