
© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Our API Assessment Process

Discovery Analysis Define and
Develop

Document Conclusion

People

Critical Understandings

EcoSystem, Problem,

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Assessment Flow

User
Interface

ClientCloud
Request Handler

Cloud
API Wrapper

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

SWOT Examination

W E A K N E S S E S

O
P

P
O

R
T

U
N

IT
IE

ST H R E A T S

S
T

R
E

N
G

T
H

S

SWOT

Strengths
Existing applications satisfy

business need.

Excellent portfolio of promotional

capabilities.

Opportunities
Refactor APIs as products.

Leverage wholesale application

community to drive business.

Secure application by leveraging

existing infrastructure.

Weaknesses
Security through obscurity.

No deployment methodology.

Dated technology.

Threats
Security and policy.

Developer attraction to dated

technology.

Legal liability.

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Code Readiness
Is there enough information for a developer to begin coding and testing?

Code

Base

Code Start

Instead of measuring code quality, readability, the attempt here is to

measure if the developer has enough information to proceed through

the DevOps lifecycle.

100%
Wireframes

50%

Code
Reviews

0%
Unit Test

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

API Security Level
The ability to protect information systems and assets while delivering business value through risk assessments and mitigation strategies.

Minimal

Discretionary

Controlled

Labeled

Structured

Verified

Protection

High

Somewhat
High

Level 1 - Minimal Protection
Zero Characteristics, Evaluation Failed

Level 2 - Discretionary Protection
Identification, Authentication, Assurance Minimal, DAC

Level 3 - Controlled Access
Auditing Capable, Security Testing

Level 4 - Labeled Security
MAC for objects, Labeled Object Access, Stringent Security Testing, Security Model

Level 5 - Structured Protection
High level design, Layered Abstraction, Tamperproof functions,
Admin guide, Design Documentation

Risk

Medium

Somewhat
Low

Low

Security Level Description

Level 6 - Verified ProtectionNo Risk

We are here

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

API Security Audit

Tr
an

sp
or

t

Au
th

or
iza

tio
n

Re
qu

es
t/

Re
sp

on
se

Ha

nd
lin

g

Pr
oc

es
s

Au
th

en
tic

at
io

n

Co
nt

ex
t

Se
cu

rit
y

Co
di

ng

Pr
ac

tic
es

Identity of caller known Path does not contain

sensitive information

Valid and verified data

exchanged, no caching of

information

Dynamic queries forbidden,

errors caught and

converted to standard

HTTP errors.

Appropriate personnel can

deploy and disable APIs.
Information transmission in

most secure fashion

Access to resource verified

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Current State Measurements
Degree of security

Transport Authorization Authentication Context Request/
Response

Security
Coding

Process

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Future State

Authenticate First, then
authorize,

Allow only enough access

Log all API
Interaction to get
end-to-end usage

view

Use simplest method of
authentication, authorization
for API. Don’t implement your

own.

Configure and
adopt standards,

avoid coding
security

Layer API security

IP whitelisting

Two way SSL/TLS

TLS version enforcement

Geo Filtering

Filter out bots

Leverage API
policies

Secure end to end
connection

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

Incorporation Strategy

Gateway

Step 2

❖ Place all APIs behind
a gateway

❖ Utilize gateway Policy

❖ Establish token use

Policy

Step 3

❖ Caching

❖ Security

❖ Mediation

Authentication

Step 4

❖ API Gateway is only
authorized caller to
backend

❖ No part of API
operates without
validating identity of
caller

❖ No caching of
credentials

Authorization

Step 5

❖ Backend system
validates the provider
claim set

❖ Return error on
authorization failure

❖ All code paths
require authorization
by default.

Process

Step 6

❖ Code passes security
audit

❖ Code base
consolidated into
deployment process

❖ Unit test written

Transport

Step 1

❖ All communication to
network edge use
TLS

❖ All communication
from edge to backend
use TLS

❖ Trusted issued
certificates, checked
for validity

© Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

All communica+ons to the edge of the network are secured using the most recent version of TLS with perfect forward secrecy and a modern cipher set.
All communica+ons from the edge of the network to backends are secured using the most recent version of mutual TLS with perfect forward secrecy and a modern cipher set.
No export grade encryp+on algorithms are used.
Cer+ficates are issued by a trusted PKI.
Cer+ficates are checked for revoca+on on every call.
Cer+ficates are checked for validity period on every call.
Cer+ficates are checked against presented server names for every call.
Cer+ficates uniquely iden+fy a specific system (i.e., wildcard cer+ficates are not used).
Cer+ficates are properly controlled to ensure their private keys are protected.
Cer+ficate pinning or another suitable cer+ficate protec+on method should be employed.
If OAuth is used, OAuth 2.0 is used instead of 1.0a.
OAuth or another suitable authen+ca+on mechanism to used to authen+cate access to all endpoints.
The API Gateway is responsible for handling authen+ca+on; endpoints do not authen+cate users.
All calling applica+ons provide an API key in the header.
The API Gateway does not cache the results of authen+ca+on for given creden+als.
The API Gateway validates that a presented Bearer token was issued to the presen+ng applica+on.
Authen+ca+on results include a set of claims.
Bearer tokens are signed, then encrypted, JWTs when exposed to calling applica+ons.
The API Gateway transmits claims to backend systems to handle domain and business logic-based authoriza+on.
The API Gateway is the only authorized caller to backend systems, and it authen+cates using a digital cer+ficate over mutual TLS.
Remote systems cannot impersonate users without evidence that the user has authen+cated and authorized this impersona+on.
No part of the API delivery stack operates without valida+ng the iden+ty of its caller.
The API Gateway properly validates JWTs.
A 401 is returned for any authen+ca+on failure.
The API Gateway evaluates the calling applica+on to authorize access to an endpoint.
The API Gateway evaluates the scopes of the Bearer token or an equivalent mechanism to authorize access to an endpoint.
Authoriza+on that requires domain knowledge is implemented below the API Gateway.
The API Gateway provides claims to underlying systems to perform authoriza+on.
Authoriza+on results are not cached.
Backend systems validate that the provider of a claimset is authorized to provide that claimset.
If OAuth is used, users can revoke tokens without administrator assistance.
A 403 is returned for any authoriza+on failure.
Authoriza+on logic occurs early in the code path, before any business logic is executed.
All code paths require authoriza+on by default.
Scope claims are used to constrain the ac+vi+es permiWed by an caller's provided authen+ca+on material.
Sensi+ve informa+on is not visible in paths.
Sensi+ve informa+on is not visible in headers.
Correla+on keys are requested of clients.
If a client does not provide a correla+on key, one is created by the API Gateway.
Context returned to the client that the API expects to have returned to it is cryptographically secured.
Content types of request bodies are verified.
Methods that do not accept content (such as GETs) reject requests that aWempt to send such data.
Content is verified to be syntac+cally correct.
Content is verified against an appropriate schema, if JSON or XML.

Request bodies are not directly bound to data objects.
Proper+es, headers, and content in the request is ignored if the API does not understand or expect it.
Binary objects are only accepted as base64 encoded strings.
Call rates are throWled by caller and overall on an endpoint.
Errors are returned in a consistent structure.
Stack traces and other internal informa+on about the opera+ons of your API's backends are not returned in errors.
Proprietary informa+on, such as server names or pla^orms, are not returned in response headers or bodies.
Excess informa+on about the nature of an error, such as "invalid password" instead of "invalid or missing creden+als," is not provided in errors.
Error responses only include sufficient informa+on for a consumer to know how to correct their request.
Sensi+ve informa+on is not visible in response headers.
Authen+ca+on and authoriza+on-relevant endpoints use the no-cache direc+ve.
Stale informa+on is properly iden+fied using Cache-Control headers.
All systems beyond the furthest caching layer use Cache-Control headers to disable caching.
Sensi+ve informa+on is redacted, if appropriate, by data loss protec+on systems.
CORS should be available for any API that is likely to be accessed by JavaScript running a browser.
HSTS headers should be returned to enforce upgrades to HTTPS on all endpoints.
Responses are verified against an appropriate JSON or XML schema, if appropriate.
Responses do not contain sensi+ve data that the API expects the client to filter.
All SQL queries are parameterized.
Dynamic SQL in stored procedures is forbidden.
JSON is not evaluated directly as JavaScript.
External references in JSON and XML documents are not followed.
Binary code or script code in request bodies is never executed.
Security-related events are logged to a centralized security event system.
All excep+ons are caught and converted to standardized errors.
All type shapes in the API's contract defini+on have clearly defined and explicit descrip+ons and valida+on paWerns.
Developers must aWest to the security of their API product, including all code within it.
Systems hos+ng API delivery stack components are patched regularly.
Informa+on security personnel are part of API product teams.
APIs are tested for security flaws with penetra+on tes+ng tools.
APIs are tested for common security flaws with sta+c code analysis tools.
APIs are only developed using managed code.
Cri+cal vulnerabili+es in API delivery stack components are patched immediately.
Network isola+on techniques are used to control the flow of API traffic.
Sudden changes in the usage of an API are detected and reviewed.
Security-sensi+ve policy in the API Gateway is maintained in shared libraries and access to change it is controlled.
Appropriate personnel can disable APIs.
Appropriate personnel can disable access to APIs by applica+ons.
Data is marked with appropriate security classifica+ons to iden+fy its appropriate usage.
Developers cannot modify code in any enviroment without following the normal code progression path.
Automated test systems prevent untested code from entering environments.
Technical debt, including excep+ons to these standards, is recorded and reported to management.
Non-produc+on endpoints are not available to consumers, unless the endpoint is a well-defined sandbox endpoint exposing only test data.
APIs are properly inventoried such that the en+re solu+on, including underlying infrastructure, are available for review and analysis.

API Security Yardstick

Confidential © Taliferro. Taliferro Is Registered In The U.S. Patent And Trademark Office.

dba Taliferro Group
Making Things Better
06/09/2024

425.600.7066
vikki.owens@taliferro.com x102
ty.showers@taliferro.com x101
ATTN: Taliferro Group
1424 11th Ave STE 400
Seattle, WA 98122

Taliferro Tech

mailto:vikki.owens@taliferro.com
mailto:ty.showers@taliferro.com

